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Abstract
Gödel’s Dialectica interpretation was designed to obtain the consistency of Peano arithmetic via a proof of consistency of
Heyting arithmetic and double negation. In recent years, proof theoretic transformations (the so-called proof interpretations)
based on Gödel’s Dialectica interpretation have been used systematically to extract new content from proofs and so the
interpretation has found relevant applications in several areas of mathematics and computer science. Following our previous
work on ‘Gödel fibrations’, we present a (hyper)doctrine characterization of the Dialectica, which corresponds exactly to
the logical description of the interpretation. To show that, we derive the soundness of the interpretation of the implication
connective, as expounded on by Spector and Troelstra, in the categorical model. This requires extra logical principles, going
beyond intuitionistic logic, namely Markov Principle and the Independence of Premise principle, as well as some choice.
We show how these principles are satisfied in the categorical setting, establishing a tight (internal language) correspondence
between the logical system and the categorical framework. We make sure that this tight correspondence extends to the use of
the principles above, instead of the weaker rules we had proved earlier on. This tight correspondence should come handy not
only when discussing the traditional applications of the Dialectica but also when dealing with newer uses in modelling games
or concurrency theory.

1 Introduction

Categorical logic is the branch of mathematics in which tools and concepts from category theory
are applied to the study of mathematical logic and its connections to theoretical computer science.
In broad terms, categorical logic represents both syntax and semantics by a category, and an
interpretation by a functor. The categorical framework provides a rich conceptual background
for logical and type-theoretic constructions. In many cases, the categorical semantics of a logic
provides a basis for establishing a correspondence between theories in the logic and instances of
an appropriate kind of category. A classic example is the correspondence between theories of βη-
equational logic over simply typed lambda calculus and Cartesian closed categories. Categories
arising from theories via term-model constructions can usually be characterized up to equivalence
by a suitable universal property. This has enabled proofs of meta-theoretical properties of logics
by means of an appropriate categorical algebra. One defines a suitable internal language naming
relevant constituents of a category, and then applies categorical semantics to turn assertions in a
logic over the internal language into corresponding categorical statements. The goal is to obtain
‘internal language theorems’ that allow us to pass freely from the logic/type theory to the categorical
universe, in such a way that we can solve issues in whichever framework is more appropriate.

Several kinds of categorical universe are available. Our previous joint work [30] on Gödel’s
Dialectica Interpretation [6] used the fibrational framework expounded by Jacobs [10]. The
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identification of syntax-free notions of quantifier-free formulae using categorical concepts is the
key insight to our results preliminarily described in [31]. This identification, besides explaining
how Gödel’s Dialectica interpretation works as a double completion under products and coproducts,
is itself of independent interest, as it deepens our ability to think about first-order logic, using
categorical notions. There are countless theorems in logic involving quantifier-free elements.
Without a categorical notion of quantifier-free element, we would not be able to properly state
or write such theorems in categorical terms. For example, we would not be able to write Markov
Principle categorically, and then we could not present categorically any theorem involving Markov
Principle. Therefore, having an algebraic presentation of these elements (at least in the Dialectica
context) is fundamental to present and reason categorically about traditional theorems and results of
logic.

Wishing to simplify the treatment of our previous work on generalized Gödel fibrations, we
concentrated on poset-based fibrations. This led us to more perspicuous explanations of how
the logical interpretation works in the simplified categorical setting, which we wrote in [32]. In
that paper, we show that the notions of existential-free and universal-free elements introduced
in our categorical setting correspond to well-known (non-intuitionistic but) constructive rules
underlying Gödel’s Dialectica interpretation. Then, we employ our modelling from [32] to show
under which hypotheses it is indeed the case that a Gödel hyperdoctrine is a model of the Principle
of Independence of Premises, Markov Principle and the Generalized Markov Principle themselves.
While the rule-versions of these principles do not require any additional hypothesis for a given Gödel
hyperdoctrine to be satisfied, we show that the logical principles require that quantifier-free elements
have to be closed under Heyting operations to be satisfied. This closure condition under Heyting
operations for quantifier-free elements appears quite natural from a logical perspective, since, e.g.
the conjunction or the disjunction of quantifier-free elements is always a quantifier-free element in
logic. These considerations improve our previous results in [32] showing that a Gödel Hyperdoctrine
satisfying some additional (but quite natural) hypotheses is a model of the Rule of Independence of
Premises and the (Generalized) Markov rule only.

The validity of the Principle of Independence of Premises, (Generalized) Markov Principle and
the Principle of Skolemization in every Gödel hyperdoctrine satisfying this closure condition with
respect to Heyting operations allows us to conclude that the key equivalence (ψ → φ)D ↔ (ψD →
φD) motivating the translation of the implicational connective in the Dialectica interpretation is
satisfied. This result can be considered a strengthening of our previous main theorem in [32], as this
can now be obtained as an application of our new result.

2 Logical principles in Dialectica

Gödel’s Dialectica interpretation [5, 6] associates to each formula φ in the language of arithmetic its
Dialectica interpretation φD, i.e. a formula of the form:

φD = ∃u.∀x.φD,

where φD is a quantifier-free formula in the language of system T, trying to be as constructive as
possible. The associations (−)D and (−)D are defined inductively on the structure of the formulae,
and we refer to [5, 6] for a complete description. The most complicated clause of the translation (and,
in Gödel’s words, ‘the most important one’) is the definition of the translation of the implication
connective (ψ → φ)D. This involves two logical principles that are usually not acceptable from an
intuitionistic point of view, namely a form of the Principle of Independence of Premise (IP) and a
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generalization of Markov Principle (MP). The interpretation is given by:

(ψ → φ)D = ∃V , X .∀u, y.(ψD(u, X (u, y)) → φD(V(u), y)).

The motivation provided in the collected works of Gödel for this translation is that given a witness
u for the hypothesis ψD, one should be able to obtain a witness for the conclusion φD, i.e. there
exists a function V assigning a witness V(u) of φD to every witness u of ψD. Moreover, this
assignment has to be such that from a counterexample y of the conclusion φD, we should be able to
find a counterexample X (u, y) to the hypothesis ψD. This transformation of counterexamples of the
conclusion into counterexamples for the hypothesis is what gives Dialectica its essential bidirectional
character.

We first recall the technical details behind the translation of (ψ → φ)D ([6]) showing the precise
points in which we have to employ the non-intuitionistic principles (MP) and (IP). First notice that
ψD → φD, i.e.:

∃u.∀x.ψD(u, x) → ∃v.∀y.φD(v, y) (1)

is equivalent to:

∀u.(∀x.ψD(u, x) → ∃v.∀y.φD(v, y)). (2)

If we apply a special case of the Principle of Independence of Premise, namely:

(∀x.θ(x) → ∃v.∀y.η(v, y)) → ∃v.(∀x.θ(x) → ∀y.η(v, y)), (IP*)

we obtain that (2) is equivalent to:

∀u.∃v.(∀x.ψD(u, x) → ∀y.φD(v, y)). (3)

Moreover, we can see that this is equivalent to:

∀u.∃v.∀y.(∀x.ψD(u, x) → φD(v, y)). (4)

The next equivalence is motivated by a generalization of Markov’s Principle, namely:

¬∀x.θ(u, x) → ∃x.¬θ(u, x). (MP)

By applying (MP), we obtain that (4) is equivalent to:

∀u.∃v.∀y.∃x.(ψD(u, x) → φD(v, y)). (5)

To conclude that ψD → φD = (ψ → φ)D, we have to apply the Axiom of Choice (or
Skolemization), i.e.:

∀y.∃x.θ(y, x) → ∃V .∀y.θ(y, V(y)), (AC)

twice, obtaining that (5) is equivalent to:

∃V , X .∀u, y.(ψD(u, X (u, y)) → φD(V(u), y)).

This analysis (from Gödel’s Collected Works, page 231) highlights the key role the principles (IP),
(MP) and (AC) play in the Dialectica interpretation of implicational formulae. The role of the
axiom of choice (AC) has been discussed from a categorical perspective both by Hofstra [8] and
in our previous work [31]. We re-examine the two principles (IP) and (MP) in the next subsections,
following what we discussed in [31].
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2.1 Independence of Premise

In logic and proof theory, the Principle of Independence of Premise states that:

(θ → ∃u.η(u)) → ∃u.(θ → η(u)),

where u is not a free variable of θ . While this principle is valid in classical logic (it follows from the
law of the excluded middle), it does not hold in intuitionistic logic, and it is not generally accepted
constructively [2]. The reason why the principle (IP) is not generally accepted constructively is that,
from a constructive perspective, turning any proof of the premise θ into a proof of ∃u.η(u) means
turning a proof of θ into a proof of η(t) where t is a witness for the existential quantifier depending
on the proof of θ . In particular, the choice of the witness depends on the proof of the premise θ ,
while the (IP) principle tell us, constructively, that the witness can be chosen independently of any
proof of the premise θ .

In the Dialectica translation, we only need a particular version of the (IP) principle:

(∀y.θ(y) → ∃u.∀v.η(u, v)) → ∃u.(∀y.θ(y) → ∀v.η(u, v)), (IP*)

which means that we are asking (IP) to hold not for every formula, but only for those formulas of the
form ∀y.θ(y) with θ quantifier-free. We recall a useful generalization of the (IP*) principle, namely:

(θ → ∃u.η(u)) → ∃u.(θ → η(u)), (IP)

where θ is existential-free, i.e. θ does not contain existential quantifiers (of course, it is also assumed
that u is not a free variable of θ ). Therefore, the condition that (IP) holds for every formula of the
form ∀y.θ(y) with θ(y) quantifier-free is replaced by asking that it holds for every existential-free
formula.

A similar formulation of (IP) is introduced in [21] where, starting from the observation that
intuitionistic finite-type arithmetic is closed under the independence of premise rule (IPR) for ∃-
free formula, i.e. formulae that neither contain existential quantifiers nor disjunctions, it is proved
that a similar result holds for many set theories including Constructive Zermelo–Fraenkel Set Theory
(CZF) and Intuitionistic Zermelo–Fraenkel Set Theory (IZF).

The Independence of Premise Rule for existential-free formula (IPR) that we use in this paper
states that:

if � θ → ∃u.η(u)) then � ∃u.(θ → η(u)), (IPR)

where θ is existential-free.

2.2 Markov Principle

Markov Principle is a statement that originated in the Russian school of constructive mathematics.
Formally, Markov’s principle is usually presented as the statement:

¬¬∃x.φ(x) → ∃x.φ(x),

where φ is a quantifier-free formula. Thus, MP in the Dialectica interpretation, namely:

¬∀x.φ(x) → ∃x.¬φ(x), (MP)

with φ(x) a quantifier-free formula, can be thought of as a generalization of the Markov Principle
above. As remarked in [2], the reason why MP is not generally accepted in constructive mathematics
is that in general there is no reasonable way to choose constructively a witness x for ¬φ(x) from a
proof that ∀x.φ(x) leads to a contradiction. However, in the context of Heyting Arithmetic, i.e. when
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x ranges over the natural numbers, one can prove that these two formulations of Markov Principle are
equivalent. More details about the computational interpretation of Markov Principle can be found in
[19]. We recall the version of Markov’s Rule (MR) corresponding to Markov Principle:

if � ¬∀x.φ(x) then � ∃x.¬φ(x), (MR)

where φ(x) is a quantifier-free formula.

3 Logical doctrines

One of the most relevant notions of categorical logic that enabled the study of logic from a
pure algebraic perspective is that of a hyperdoctrine, introduced in a series of seminal papers by
F.W. Lawvere to synthesize the structural properties of logical systems [11–13]. Lawvere’s crucial
intuition was to consider logical languages and theories as fibrations to study their 2-categorical
properties, e.g. connectives, quantifiers and equality are determined by structural adjunctions. Recall
from [11, 23] that a hyperdoctrine is a functor:

P : Cop −→ Hey

from the opposite of a Cartesian closed category C to the category of Heyting algebras Hey satisfying

some further conditions: for every arrow A
f−→ B in C, the homomorphism Pf : P(B) −→ P(A) of

Heyting algebras, where Pf denotes the action of the functor P on the arrow f , has a left adjoint ∃f
and a right adjoint ∀f satisfying the Beck–Chevalley conditions. The intuition is that a hyperdoctrine
determines an appropriate categorical structure to abstract both notions of first order theory and of
interpretation.

Semantically, a hyperdoctrine is essentially a generalization of the contravariant powerset functor
on the category of sets:

P : Setop −→ Hey

sending any set-theoretic arrow A
f−→ B to the inverse image functor:

PB
P f =f −1

−−−−−→ PA.

However, from the syntactic point of view, a hyperdoctrine can be seen as the generalization of the
so-called Lindenbaum–Tarski algebra of well-formed formulae of a first order theory. In particular,
given a first order theory T in a first order language L, one can consider the functor:

LT : Vop −→ Hey

whose base category V is the syntactic category of L, i.e. the objects of V are finite lists −→x :=
(x1, . . . , xn) of variables and morphisms are lists of substitutions, while the elements of LT (−→x ) are
given by equivalence classes (with respect to provable reciprocal consequence ��) of well-formed
formulae in the context −→x , and order is given by the provable consequences with respect to the
fixed theory T . Notice that in this case an existential left adjoint to the weakening functor LTπ is
computed by quantifying existentially the variables that are not involved in the substitution given by
the projection (by duality the right adjoint is computed by quantifying universally).

Recently, several generalizations of the notion of a Lawvere hyperdoctrine were considered, and
we refer e.g. to [15–17] or to [9, 24] for higher-order versions. In this work, we consider a natural
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generalization of the notion of hyperdoctrine, and we call it simply a doctrine. A doctrine is just a
functor:

P : Cop −→ Pos,

where the category C has finite products and Pos is the category of posets.
Depending on the categorical properties enjoyed by P, we get P to model the corresponding

fragments of first order logic formally in a way identical to the one for P , which we call a generalized
Tarski semantics and which continues to be complete. Again, the syntactic intuition behind the
notion of doctrine P : Cop −→ Pos remains the same, one should think of C as the category of
contexts associated to a given type theory. Given such a context A, the elements of the posets P(A)

represent the predicates in context A and the order relation of P(A) represents the relation of syntactic

provability (with respect to the fragment of first order logic modelled by P). Arrows B
f−→ A of C

represent (finite lists of) terms-in-context:

b : B | f (b) : A

in such a way that the functor Pf models the substitution by the (finite list of) term(s) f . For instance,
if α element of PA represents a formula in context a : A | α(a), then the element Pf (α) of P(B)

represents the formula b : B | α(f (b)) in context B obtained by substituting f into α. Notice that
we follow the notation used, e.g. in [18] to denote a term-in-context and a formula-in-context. In
particular, we write b : B | f (b) : A for a term f (b) of sort A in the context b : B, and similarly we
write a : A | α(a) to denote a formula α(a) in the context a : A.

Now we recall from [15, 16, 27] the notions of existential and universal doctrines, and we refer
to [23] for a detailed introduction to the theory of doctrines and hyperdoctrines. For further insights
and applications to higher-order logic or realizability, we refer to [9, 24, 33].

DEFINITION 3.1
A doctrine P : Cop −→ Pos is existential (resp. universal) if, for every A1 and A2 in C and every
projection A1 × A2

πi−→ Ai, i = 1, 2, the functor:

PAi
Pπi−−→ P(A1 × A2)

has a left adjoint ∃πi (resp. a right adjoint ∀πi), and these satisfy the Beck–Chevalley condition: for
any pullback diagram:

with π and π ′ projections, for any β in P(X ) the equality:

∃π ′Pf ′β = Pf ∃πβ ( resp. ∀π ′Pf ′β = Pf ∀πβ )

holds (however, observe that the inequality ∃π ′Pf ′β ≤ Pf ∃πβ ( resp. ∀π ′Pf ′β ≥ Pf ∀πβ ) always
holds).

If a doctrine P : Cop −→ Pos is existential and α ∈ P(A × B) is a formula-in-context a : A, b :
B | α(a, b) and A × B

πA−→ A is the product projection on the component A, then ∃πAα ∈ PA
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represents the formula a : A | ∃b : B.α(a, b) in context A. Analogously, if the doctrine P is universal,
then ∀πAα ∈ PA represents the formula a : A | ∀b : B.α(a, b) in context A. This interpretation is
sound and complete for the usual reasons: this is how classic Tarski semantics can be characterized
in terms of categorical properties of the powerset functor P : Setop −→ Pos.

One of the most interesting aspects of this categorical approach to logic is that there is categorical
equivalence between logical theories and doctrines, via the so-called internal language of a doctrine
[14, 23]. The internal language of a doctrine P essentially constitutes a syntax endowed with a
semantics induced by P itself: there is a way to interpret every sequent in the fragment of first-
order logic modelled by P into a categorical statement involving P. This interpretation is sound
and complete; this is precisely why we can deduce properties of P through a purely syntactical
procedure. We define the following notation for this syntax, taking advantage of these equivalent
ways of reasoning about doctrines and logic.
Notation. From now on, we shall employ the logical language provided by the internal language of
a doctrine and write:

a1 : A1, . . . , an : An | φ(a1, . . . , an) � ψ(a1, . . . , an)

instead of:

φ ≤ ψ

in the fibre P(A1 × · · · × An). Similarly, we write:

a : A | φ(a) � ∃b : B.ψ(a, b) and a : A | φ(a) � ∀b : B.ψ(a, b)

in place of:

φ ≤ ∃πAψ and φ ≤ ∀πAψ

in the fibre P(A). Also, we write a : A | φ �� ψ to abbreviate a : A | φ � ψ and a : A | ψ � φ.
Substitutions via given terms (i.e. reindexings and weakenings) are modelled by pulling back
along those given terms. Applications of propositional connectives are interpreted by using the
corresponding operations in the fibres of the given doctrine. Finally, when the type of a quantified
variable is clear from the context, we will omit the type for the sake of readability.

4 Logical principles via universal properties

It is possible to characterize, in terms of weak universal properties, those predicates of a doctrine
that are free from a quantifier. In the following definitions, we pursue this idea of defining those
elements of an existential doctrine P : Cop −→ Pos that are free from left adjoints ∃π . This idea was
originally introduced in [28] and, independently, in [4], and then further developed and generalized
in the fibrational setting in [31].

DEFINITION 4.1
Let P : Cop −→ Pos be an existential doctrine and let A be an object of C. A predicate α of the fibre
P(A) is said to be an existential splitting if it satisfies the following weak universal property: for
every projection A × B

πA−→ A of C and every predicate β of P(A × B) such that α ≤ ∃πA(β), there

exists an arrow A
g−→ B such that:

α ≤ P〈1A,g〉(β).
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Notice that in Definition 4.1 we require the existence of an arrow, but not the uniqueness. This is
due to the fact that doctrines are a proof-irrelevant version of fibration, and this is the reason why
in fibrational-version of Definition 4.1 presented in [31] we have to require the unicity of the arrow,
while in the context of doctrines we do not. Existential splittings stable under re-indexing are called
existential-free elements. Thus we introduce the following definition:

DEFINITION 4.2
Let P : Cop −→ Pos be an existential doctrine and let I be an object of C. A predicate α of the fibre

P(I) is said to be existential-free if Pf (α) is an existential splitting for every morphism A
f−→ I .

Employing the presentation of doctrines via internal language, we require of the formula i :
I | α(i) to be free from the existential quantifier that, whenever a : A | α(f (a)) � ∃b : B.β(a, b) for
some term a : A | f (a) : I , there is a term a : A | g(a) : B such that a : A | α(f (a)) � β(a, g(a)).

Observe that in general we always have that a : A | β(a, g(a)) � ∃b : B.β(a, b), in other words
P〈1A,g〉β ≤ ∃πAβ. In fact, it is the case that β ≤ PπA∃πAβ (as this arrow of P(A × B) is nothing
but the unit of the adjunction ∃πA � PπA ), hence a re-indexing by the term 〈1A, g〉 yields the desired
inequality. Therefore, the property that we are requiring for i : I | α(i) turns out to be the following:
whenever there are proofs of ∃b : B.β(a, b) from α(f (a)), at least one of them factors through
the canonical proof of ∃b : B.β(a, b) from β(a, g(a)) for some term a : A | g(a) : B. This fact
implies that, while freely adding the existential quantifiers to a doctrine, we do not add a new sequent
α � ∃b.β(b) (where α and β(b) are predicates in the doctrine we started from) as long as we do not
allow a sequent α � β(g) as well, for some term g (see [29] for more details). For the proof-relevant
versions of this definition, we refer to [31].

DEFINITION 4.3
Let P : Cop−−→ Pos be an existential doctrine. Then we indicate by P∃-free : Cop−−→ Pos the
subdoctrine of P whose elements of the fibres P∃-free(A) are existential-free element of P(A).

We dualize the previous Definitions 4.1 and Definition 4.2 to get the corresponding ones for the
universal quantifier.

DEFINITION 4.4
Let P : Cop −→ Pos be a universal doctrine and let A be an object of C. A predicate α of the fibre
P(A) is said to be a universal splitting if it satisfies the following weak universal property: for every
projection A × B

πA−→ A of C and every predicate β of P(A × B) such that ∀πA(β) ≤ α, there exists

an arrow A
g−→ B such that:

P〈1A,g〉(β) ≤ α.

DEFINITION 4.5
Let P : Cop −→ Pos be a universal doctrine and let I be an object of C. A predicate α of the fibre

P(I) is said to be universal-free if Pf (α) is a universal splitting for every morphism A
f−→ I .

The property we require of the formula i : I | α(i), so that it is free from the universal quantifiers,
is that, whenever a : A | ∀b : B.β(a, b) � α(f (a)) for some term a : A | f (a) : I , then there is a term
a : A | g(a) : B such that a : A | β(a, g(a)) � α(f (a)).

We can present the dual notion of Definition 4.3.
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DEFINITION 4.6
Let P : Cop−−→ Pos be an universal doctrine. Then we indicate by P∀-free : Cop−−→ Pos the
subdoctrine of P whose elements of the fibres P∀-free(A) are universal-free element of P(A).

DEFINITION 4.7
Let P : Cop −→ Pos be a doctrine. If P is existential, we say that P has enough existential-free
predicates if, for every object I of C and every predicate α of PI , there exist an object A and an
existential-free object β in P(I × A) such that α = ∃πI β.

Analogously, if P is universal, we say that P has enough universal-free predicates if, for every
object I of C and every predicate α of PI , there exist an object A and a universal-free object β in
P(I × A) such that α = ∀πI β.

Now we can introduce a particular kind of doctrine called a Gödel doctrine. This definition works
as a synthesis of our process of categorification of the logical notions.

DEFINITION 4.8
A doctrine P : Cop −→ Pos is called a Gödel doctrine if:

1. the category C is cartesian closed;
2. the doctrine P is existential and universal;
3. the doctrine P has enough existential-free predicates;
4. the existential-free objects of P are stable under universal quantification, i.e. if α is an element

of P(A) and it is existential-free, then ∀π (α) is existential-free for every projection π from A;
5. the subdoctrine P∃-free : Cop−−→ Pos of the existential-free predicates of P has enough

universal-free predicates.

The fourth point of the Definition 4.8 above implies that, given a Gödel doctrine P : Cop −→ Pos,
the sub-doctrine P∃-free : Cop −→ Pos, such that P∃-free(A) is the poset of existential-free predicates
contained in P(A) for any object A of C, is a universal doctrine. From a purely logical perspective,
requiring existential-free elements to be stable under universal quantification is quite natural since
this can be also read as if α(x) is an existential-free predicate, then ∀x : X .α(x) is again an
existential-free predicate.

Now we have all of the tools needed to introduce the notion of quantifier-free predicate in the
categorical setting of Gödel doctrines.

DEFINITION 4.9
An element α of a fibre P(A) of a Gödel doctrine P that is both an existential-free predicate of
P and a universal-free predicate in the sub-doctrine P∃-free of existential-free elements of P is
called a quantifier-free predicate of P. The sub-doctrine of quantifier-free elements is denoted
by P∃-free : Cop−−→ Pos.

In order to simplify the notation, but also to make clear the connection with the logical presentation
in the Dialectica interpretation, for a given Gödel doctrine P : Cop−−→ Pos, we will use the notation
αD to indicate an element α of P∃∀-free, i.e. a quantifier-free predicate. Applying the definition of a
Gödel doctrine, we obtain the following result.

THEOREM 4.10
Let P : Cop−−→ Pos be a Gödel doctrine, and let α be an element of P(A). Then there exists a

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/32/8/1855/6795172 by guest on 07 January 2023
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quantifier-free predicate αD of P(I × U × X ) such that:

i : I | α(i) �� ∃u : U .∀x : X .αD(i, u, x).

This theorem shows that in a Gödel doctrine every formula admits a presentation of the precise
form used in the Dialectica translation.

Now we have all the instruments to state and prove the main theorem of this section, i.e.
Theorem 4.11. In particular, we show that employing the properties of a Gödel doctrine we can
provide a categorical description and presentation of the chain of equivalences involved in the
Dialectica interpretation of the implicational formulae. In particular, we show that the crucial
steps where (IP) and (MP) are applied are solved categorically employing universal properties of
existential-free and universal-free elements.

For sake of readability, we omit the types of quantified variables as we anticipated in the previous
section.

THEOREM 4.11
Let P : Cop−−→ Pos be a Gödel doctrine. Then for every ψD in P(I ×U ×X ) and φD in P(I ×V ×Y )

quantifier-free predicates of P we have that:

i : I | ∃u.∀x.ψD(i, u, x) � ∃v.∀y.φD(i, v, y),

if and only if there exist I × U
f0−→ V and I × U × Y

f1−→ X such that:

i : I , u : U , y : Y | ψD(i, u, f1(i, u, y)) � φD(i, f0(i, u), y).

PROOF. Let us consider two quantifier-free predicates ψD of P(I × U × X ) and φD of P(I × V × Y )

of the Gödel doctrine P. The following equivalence follows by definition of left adjoint functor:

i : I | ∃u.∀x.ψD(i, u, x) � ∃v.∀y.φD(i, v, y) ⇐⇒
i : I , u : U | ∀x.ψD(i, u, x) � ∃v.∀y.φD(i, v, y).

Now we employ the fact that the predicate ∀x.ψD(i, u, x) is existential-free in the Gödel doctrine,

obtaining that there exists an arrow I × U
f0−→ V , such that:

i : I , u : U | ∀x.ψD(i, u, x) � ∃v.∀y.φD(i, v, y) ⇐⇒
i : I , u : U | ∀x.ψD(i, u, x) � ∀y.φD(i, f0(i, u), y).

Then, since the universal quantifier is right adjoint to the weakening functor, we have that:

i : I , u : U | ∀x.ψD(i, u, x) � ∀y.φD(i, f0(i, u), y) ⇐⇒
i : I , u : U , y : Y | ∀x.ψD(i, u, x) � φD(i, f0(i, u), y).

Now we employ the fact that φD(i, f0(u), y) is universal-free in the subdoctrine of existential-free
elements of P. Notice that since ψD(i, u, x) is a quantifier-free element of the Gödel doctrine, we
have that ∀x.ψD(i, u, x) is existential free. Recall that this follows from the fact that in every Gödel
doctrine, existential-free elements are stable under universal quantification (this is the last point
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Definition 4.8). Therefore we can conclude that there exists an arrow I × U × Y
f1−→ X of C such

that:

i : I , u : U , y : Y | ∀x.ψD(i, u, x) � φD(i, f0(i, u), y) ⇐⇒
i : I , u : U , y : Y | ψD(i, u, f1(i, u, y)) � φD(i, f0(i, u), y).

Then, combining the first and the last equivalences, we obtain the following equivalence:

i : I | ∃u.∀x.ψD(i, u, x) � ∃v.∀y.φD(i, v, y) ⇐⇒
there exist (f0, f1) s.t. i : I , u : U , y : Y | ψD(i, u, f1(i, u, y)) � φD(i, f0(i, u), y). �

Notice that the arrow U
f0−→ V in Theorem 4.11 represents the witness function, i.e. it assigns

to every witness u of the hypothesis a witness f0(u) of the thesis, while the arrow U × Y
f1−→ X

represents the counterexample function. Observe that while the witness function f0(u) depends only
of the witness u the counterexample function f1(u, y) depends on a witness of the hypothesis and a
counterexample of the thesis. This is a quite natural fact because, considering the constructive point
of view, the counterexample has to be relative to a witness validating the thesis.

Therefore, Theorem 4.11 shows that the notion of Gödel doctrine encapsulates in a pure form the
basic mathematical feature of the Dialectica interpretation, namely its interpretation of implication,
which corresponds to the existence of functionals of types f0 : U → V and f1 : U × Y → X as
described. One should think of this as saying that a proof of ∃u.∀x.ψD(i, u, x) → ∃v.∀y.φD(i, v, y)
is obtained by transforming to ∀u.∃v.∀y.∃x.(ψD(i, u, x) → φD(i, v, y)), and then Skolemizing along
the lines explained in the Section 2 and by Troelstra [6]. So, combining Theorems 4.10 and 4.11, we
have strong evidence that the notion of Gödel doctrine really provides a categorical abstraction of
the main concepts involved in the Dialectica translation.

Now we show that this kind of doctrine embodies also the logical principles involved in the
translation. The first principle we consider it the axiom of choice (AC) also sometimes called the
principle of Skolemization.

THEOREM 4.12
Every Gödel doctrine P : Cop−−→ Pos validates the following Skolemization principle:

a : A | ∀b : B.∃c : C.α(a, b, c) �� ∃f : CB.∀b : B.α(a, b, ev(f , b)),

where α is any predicate in P(A × B × C).

PROOF. Let us assume that a : A | γ (a) � ∀b.∃c.α(a, b, c) for some predicate γ of P(A). By point
(3) of Definition 4.8, we assume without loss of generality that γ (a) is existential-free: otherwise,
there is an existential-free predicate γ ′ covering γ (a) and we get back to our hypothesis by using
that P is existential.

Since P is universal, it is the case that a : A, b : B | γ (a) � ∃c.α(a, b, c) and, being γ (a)

existential-free:

a : A, b : B | γ (a) � α(a, b, g(a, b))

for some term in context a : A, b : B | g(a, b) : C. Being C cartesian closed, there is a context f : CB

together with a term in context f : CB, b : B | ev(f , b) : C such that there is a unique term in context
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a : A | h(a) : CB satisfying a : A, a : B | g(a, b) = ev(h(a), b) : C. Hence:

a : A, b : B | γ (a) � α(a, b, ev(h(a), b))

and being P universal, it is the case that:

a : A | γ (a) � ∀b.α(a, b, ev(h(a), b)).

Finally, since:

a : A | ∀b.α(a, b, ev(h(a), b)) � ∃f .∀b.α(a, b, ev(f , b)),

(this holds for any predicate δ(a, −) in place of the predicate ∀b.α(a, b, ev(−, b))) we conclude that:

a : A | γ (a) � ∃f .∀b.α(a, b, ev(f , b)).

We are done by taking ∀b.∃c.α(a, b, c) as the predicate γ (a). �

REMARK 4.13
In the proof of Theorem 4.12 we do not need the property 5. of Definition 4.8. That is why, according
to [31], one calls a Skolem doctrine a doctrine satisfying all of the properties satisfied by a Gödel
doctrine, except for the property named 5. here.

4.1 Dialectica construction

Recall that the notion of Dialectica category introduced in [3] was generalized to the fibrational
setting by Hofstra in [8], and this means that, in particular, we can consider the proof-irrelevant
construction associating a doctrine Dial(P) to a given doctrine P:

Dialectica construction. Let P : Cop−−→ Pos be a doctrine whose base category C is cartesian
closed. The dialectica doctrine:

Dial(P) : Cop−−→ Pos

is defined as the functor sending an object I into the poset Dial(P)(I) defined as follows:

• objects are quadruples (I , X , U , α) where I , X and U are objects of the base category C and
α ∈ P(I × X × U);

• partial order: we stipulate that (I , U , X , α) ≤ (I , V , Y , β) if there exists a pair (f0, f1), where

I × U
f0−→ V and I × U × Y

f1−→ X are morphisms of C such that:

α(i, u, f1(i, u, y)) ≤ β(i, f0(i, u), y).

In [31], we proved that a fibration is an instance of the Dialectica construction if and only if it is a
Gödel fibration, and to prove this result we employ the decomposition of the Dialectica monad as a
free-simple-product completion followed by the free-simple-coproduct completion of fibrations. So
we can deduce the same result for the proof-irrelevant version here simply as a particular case.

However, notice that employing Theorems 4.10 and 4.11 we have another simpler and more direct
way of proving such correspondence. This is because Theorem 4.11 states that the order defined in
the fibres of a Gödel doctrine is exactly the same order defined in a dialectica doctrine. The idea
is that if P is a Gödel doctrine and P∃∀-free is the subdoctrine of quantifier-free elements of P it is

easy to check that the assignment P(I)
(−)D

−−−→ Dial(P∃∀-free)(I) sending α �→ (I , X , U , αD) where
αD is the quantifier-free element such that α(i) �� ∃u∀xαD(i, u, x) (which exists by Theorem 4.10),

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/32/8/1855/6795172 by guest on 07 January 2023
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provides an isomorphism of posets by Theorem 4.11, and it can be extended to an isomorphism of
existential and universal doctrines.

THEOREM 4.14
Every Gödel doctrine P is equivalent to the Dialectica completion Dial(P∃∀-free) of the subdoctrine
P∃∀-free of P consisting of the quantifier-free predicates of P.

Therefore, we have that Theorem 4.14 provides another way of thinking about Dialectica doctrines
(or Dialectica categories) since it underlines the logical properties that a doctrine has to satisfy in
order to be an instance of the Dialectica construction.

5 Logical principles in Gödel hyperdoctrines

Gödel doctrines provide a categorical framework that generalizes the principal concepts underlying
the Dialectica translation, such as the existence of witness and counterexample functions whenever
we have an implication i : I | ∃u.∀x.ψD(u, x, i) � ∃v.∀y.φD(v, y, i). The key idea is that, intuitively,
the notion of existential-quantifier-free objects can be seen as a reformulation of the independence
of premises rule, while quantifier-free objects can be seen as a reformulation of Markov rule. Notice
that in the proof of Theorem 4.11 existential and universal free elements play the same role that (IP)
and (MP) have in the Dialectica interpretation of implicational formulae.

The main goal of this section is to formalize this intuition showing the exact connection between
the rules (IPR) and (MR), the principles (IP) and (MP) and Gödel doctrines. So, first of all we have
to equip Gödel doctrines with the appropriate Heyting structure in the fibres in order to be able to
formally express these principles. Therefore, we have to consider Gödel hyperdoctrines.

DEFINITION 5.1
A hyperdoctrine P : Cop−−→ Hey is said a Gödel hyperdoctrine when P is a Gödel doctrine.

From a logical perspective, one might want the quantifier-free predicates to be closed with respect
to all of the propositional connectives (or equivalently that P is the dialectica completion of a
hyperdoctrine itself—see [29]), since this is what happens in logic. However, for sake of generality,
we do not assume such closure condition on quantifier-free elements.

5.1 Logical rules

The main purpose of this section is to show what logical rules are satisfied in a Gödel hyperdoctrine.

THEOREM 5.2
Every Gödel hyperdoctrine P : Cop−−→ Hey validates the Rule of Independence of Premise, i.e.
whenever β ∈ P(A × B) and α ∈ P(A) is a existential-free predicate, it is the case that:

a : A | � � α(a) → ∃b.β(a, b) implies that a : A | � � ∃b.(α(a) → β(a, b)).

PROOF. Let us assume that a : A | � � α(a) → ∃b.β(a, b). Then it is the case that a : A | α(a) �
∃b.β(a, b). Since α(a) is free from the existential quantifier, it is the case that there is a term in
context a : A | t(a) : B such that:

a : A | � � α(a) → β(a, t(a)).
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1868 Dialectica logical principles: not only rules

Therefore, since:

a : A | α(a) → β(a, t(a)) � ∃b.(α(a) → β(a, b)),

(as this holds for any predicate γ (a, −) in place of the predicate αD(a) → β(a, −)) we conclude
that:

a : A | � � ∃b.(α(a) → β(a, b)). �
Notice that Theorem 5.2 formalizes precisely the intuition that the notion of existential-free ele-

ment can be seen as a reformulation of the independence of premises rule: in a Gödel hyperdoctrine,
we have that existential-free elements are exactly elements satisfying the independence of premises
rule.

THEOREM 5.3
Every Gödel hyperdoctrine P : Cop−−→ Hey satisfies the following Generalized Markov Rule, i.e.
whenever βD ∈ P(A) is a quantifier-free predicate and α ∈ P(A × B) is an existential-free predicate,
it is the case that:

a : A | � � (∀b.α(a, b)) → βD(a) implies that a : A | � � ∃b.(α(a, b) → βD(a)).

PROOF. Let us assume that a : A | � � (∀b.α(a, b)) → βD(a). Then it is the case that
a : A | (∀b.α(a, b)) � βD(a). Hence, since βD is quantifier-free and α is existential-free, there
exists a term in context a : A | t(a) : B such that:

a : A | � � α(a, t(a)) → βD(a),

therefore, since:

a : A | α(a, t(a)) → β(a) � ∃b.(α(a, b) → βD(a)),

we can conclude that:

a : A | � � ∃b.(α(a, b) → βD(a)). �
While for the case of (IPR), we have that existential-free elements of a Gödel hyperdoctrine

correspond to formulae satisfying (IPR), we have that the elements of a Gödel doctrine that are
quantifier-free, i.e. universal-free in the subdoctrine of existential-free elements, are exactly those
satisfying a Generalized Markov Rule by Theorem 5.3. Moreover, notice that this Generalized
Markov Rule is exactly the one we need in the equivalence between (4) and (5) in the interpretation of
the implication in Section 2. Alternatively, in order to get this equivalence, one requires βD to satisfy
the law of excluded middle and the usual Markov Rule (see Corollary 5.4), as these two assumptions
yield the Generalized Markov Rule. In particular, any boolean doctrine (a hyperdoctrine modelling
the law of excluded middle) satisfies the Generalized Markov Rule (see Remark 5.5).

To obtain the usual Markov Rule as corollary of Theorem 5.3, we simply have to require the
bottom element ⊥ of a Gödel hyperdoctrine to be quantifier-free.

COROLLARY 5.4
Every Gödel hyperdoctrine P : Cop−−→ Hey such that ⊥ is a quantifier-free predicate satisfies
Markov Rule, i.e. for every quantifier-free element αD ∈ P(A × B) it is the case that:

b : B | � � ¬∀a.αD(a, b) implies that b : B | � � ∃a.¬αD(a, b).
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PROOF. It follows by Theorem 5.3 just by replacing βD with ⊥, that is quantifier-free by
hypothesis. �

REMARK 5.5
Clearly any boolean doctrine satisfies the Rule of Independence of Premises and the (Modified)
Markov Rule, as it models every inference rule of classic first-order logic. In general, these are not
satisfied by a usual hyperdoctrine, because they are not satisfied in intuitionistic first-order logic.
It turns out that the logic modelled by a Gödel hyperdoctrine is right in-between intuitionistic first-
order and classical first-order logic: it is powerful enough to guarantee the equivalences in Section
2 that justify the Dialectica interpretation of the implication.

REMARK 5.6
We observe that Theorem 5.3 and Theorem 5.2 deal with the validity of the rule versions of (IP)
and (MP), and not the usual presentation in form of axioms or principles. As pointed out in [21], in
general, these are not valid in an arbitrary intuitionistic theory, so it becomes interesting to find out
which are the intuitionist theories that validate these rules. The validity of these rules in arbitrary
Gödel hyperdoctrines have two main consequences: first, since HA validates these rules, see [26],
and Gödel’s Dialectica interpretation was originally introduced to provide proofs of the relative
consistency of HA, the fact that Gödel doctrines validate these rules too underscores how faithful
the modelling is. If Gödel doctrines or Dialectica categories didn’t validate these rules, it would be
hard to say that these categorical constructions abstract the main features of the logical translation,
since they could not be employed for giving proofs of relative consistency of HA.

Secondly, we have that validating these rules suggests that the internal logic of Gödel hyperdoc-
trines could represent an interesting family of theories being intuitionistic, but at the same time
validating the rule versions of (IP) and (MP).

We conclude this section on logical rules by presenting two other results about the Rule of
Choice and the Counterexample Property previously defined in [29], which follow directly from
the definitions of existential-free and universal-free elements.

COROLLARY 5.7
Every Gödel hyperdoctrine P : Cop−−→ Hey such that ⊥ is a quantifier-free object satisfies the
Counterexample Property, i.e. whenever:

a : A | ∀b.α(a, b) � ⊥
for some predicate α(a, b) ∈ P(A × B), then it is the case that:

a : A | α(a, g(a)) � ⊥
for some term in context a : A | g(a) : B.

COROLLARY 5.8
Every Gödel hyperdoctrine P : Cop−−→ Hey such that � is existential-free satisfies the Rule of
Choice, i.e. whenever:

a : A | � � ∃b.α(a, b)

for some existential-free predicate α ∈ P(A × B), then it is the case that:

a : A | � � α(a, g(a))

for some term in context a : A | g(a) : B.
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The rule appearing in Corollary 5.8 is called Rule of Choice in [15], while it appears as explicit
definability in [21].

5.2 Logical principles

In the previous results, we have seen what rules hold in Gödel hyperdoctrines. This subsection is
devoted to the analysis of the respective logical principles in Gödel hyperdoctrines. In detail, if
previously we found the right hypotheses that make a Gödel hyperdoctrine into a model of the Rule
of Independence of Premise and of (the Generalized) Markov Rule, in this subsection we follow the
same process for the corresponding stronger formulation of these as principles. We start by stating
the following theorem, involving the Independence of Premise in its formulation as a principle:

THEOREM 5.9
Every Gödel hyperdoctrine P : Cop−−→ Hey such that the existential-free elements are closed with
respect to finite conjunction satisfies the Principle of Independence of Premise, i.e. whenever
β ∈ P(A × B) and α ∈ P(A) is an existential-free predicate, it is the case that:

a : A | � � (α(a) → ∃b.β(a, b)) → ∃b.(α(a) → β(a, b)).

PROOF. First, since every Gödel doctrine has enough existential-free elements, there exists an
existential-free element γ (a, c) ∈ P(A × C) such that:

a : A | ∃c.γ (a, c) �� α(a) → ∃b.β(a, b).

In particular, we have that a : A, c : C | γ (a, c) � α(a) → ∃b.β(a, b). Hence we have that:

a : A, c : C | γ (a, c) ∧ α(a) � ∃b.β(a, b).

Notice that γ (a, c)∧α(a) is an existential-free element because both γ (a, c) and α(a) are existential-
free elements and existential-free elements are closed with respect finite conjunction by hypothesis.
Therefore, we can conclude that there exists a term a : A, c : C | t(a, c) : B such that:

a : A, c : C | γ (a, c) ∧ α(a) � β(a, t(a, c)),

and then we have:

a : A, c : C | γ (a, c) � α(a) → β(a, t(a, c)).

Now, since α(a) → β(a, t(a, c)) is exactly (α(a) → β(a, b))[t(a, c)/b] and it always holds that:

a : A, c : C | (α(a) → β(a, b))[t(a, c)/b] � ∃b.(α(a) → β(a, b))

we get that:

a : A, c : C | γ (a, c) � ∃b.(α(a) → β(a, b)).

Therefore we can conclude that:

a : A | ∃c.γ (a, c) � ∃b.(α(a) → β(a, b)).

Since a : A | ∃c.γ (a, c) �� α(a) → ∃b.β(a, b), it is the case that:

a : A | � � (α(a) → ∃b.β(a, b)) → ∃b.(α(a) → β(a, b)).

�
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As a corollary of the previous result, we obtain the following presentation of the principle (IP*)
introduced in Section 2.1 in terms of Gödel hyperdoctrine. We recall that (IP*) is precisely the form
of the Principle of Independence of Premise we need in the Dialectica interpretation.

COROLLARY 5.10
Every Gödel hyperdoctrine P : Cop−−→ Hey such that the existential-free elements are closed with
respect to finite conjunction satisfies (IP*), i.e. whenever β ∈ P(C × B) and αD ∈ P(A) is an
quantifier-free predicate, it is the case that:

− | � � (∀a.αD(a) → ∃b.∀c.β(c, b)) → ∃b.(∀a.αD(a) → ∀c.β(c, b)).

PROOF. It follows from Theorem 5.9 and from the fact that existential-free if αD is quantifier-free
then ∀a.αD is existential-free. �

Similarly, we can prove the following result about the Generalized Markov Principle:

THEOREM 5.11
Every Gödel hyperdoctrine P : Cop−−→ Hey such that the existential-free elements are closed
with respect to implication satisfies the following Generalized Markov Principle, i.e. whenever
βD ∈ P(A) is a quantifier-free predicate and α ∈ P(A × B) is an existential-free predicate, it is the
case that:

a : A | � � (∀b.α(a, b) → βD(a)) → ∃b.(α(a, b) → βD(a)).

PROOF. First notice that since α is an existential-free predicate and βD is a quantifier-free predicate
we have that ∀b.α(a, b) → βD(a) is an element of P∃-free(A) (because by hypothesis existential-
free elements are closed with respect to implication). Thus, since P∃-free has enough quantifier-free
elements by definition of Gödel doctrine, there exists a universal-free predicate of P∃-free, i.e. a
quantifier-free predicate σD ∈ P∃-free(×C) such that a : A | ∀c.σD(a, c) �� ∀b.α(a, b) → βD(a). In
particular, we have that a : A | ∀c.σD(a, c)∧∀b.α(a, b) � βD(a), and hence a : A | ∀c.∀b.(σD(a, c)∧
α(a, b)) � βD(a). Now, since βD is quantifier-free, i.e. it is universal-free in P∃-free, there exist two
terms a : A | t(a) : B and a : A | t′(a) : C such that:

a : A | σD(a, t′(a)) ∧ α(a, t(a)) � βD(a).

Therefore, we have that a : A | σD(a, t′(a)) � (α(a, b) → βD(a))[t(a)/b]. Now, since we always
have that a : A | ∀c.σD(a, c) � σD(a, t′(a)) and a : A | (α(a, b) → βD(a))[t(a)/b] � ∃b.(α(a, b) →
βD(a)), we can conclude that:

a : A | � � (∀b.α(a, b) → βD(a)) → ∃b.(α(a, b) → βD(a)). �
In order to obtain the usual presentation of Markov Principle as a corollary of Theorem 5.11, we

simply have to require the bottom element ⊥ of a Gödel hyperdoctrine to be quantifier-free:

COROLLARY 5.12
Every Gödel hyperdoctrine P : Cop−−→ Hey such that the existential-free elements are closed with
respect to implication and falsehood ⊥ is a quantifier-free predicate, satisfies Markov Principle,
i.e. for every quantifier-free element αD in P(A × B) it is the case that:

b : B | � � ¬∀a.αD(a, b) → ∃a.¬αD(a, b).

PROOF. It follows by Theorem 5.11 just by replacing βD with ⊥, that is quantifier-free by
hypothesis. �
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We have proved that under suitable hypotheses, a Gödel hyperdoctrine satisfies (IP), (MP), (GMP)
and the principle of Skolemization.

Therefore, combining Theorem 5.9, Theorem 5.11 (and Corollary 5.12), and Theorem 4.12, we
can repeat the chain of equivalences we provided in Section 2, and obtain the following main result.

THEOREM 5.13
Let P : Cop−−→ Hey be a Gödel hyperdoctrine such that:

• existential-free elements are closed with respect to implication and finite conjunction;
• falsehood ⊥ is a quantifier-free predicate.

Then for every ψD in P(I × U × X ) and φD in P(I × V × Y ) quantifier-free predicates of P we
have that the formula:

i : I | ∃u.∀x.ψD(i, u, x) → ∃v.∀y.φD(i, v, y)

is provably equivalent to:

i : I | ∃f0, f1.∀u, y.(ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y)).

Theorem 5.13 fully represents a categorical version of the translation of the implication connective
in the Dialectica interpretation. In particular, it shows that the equivalence (ψ → φ)D ↔ (ψD →
φD) presented in Section 2 is perfectly modelled by a Gödel hyperdoctrine satisfying the natural
additional closure properties of Theorem 5.13.

REMARK 5.14
Observe that Theorem 5.13 can be considered a stronger version of Theorem 4.11. Hence, once
more, it converts the rule stated in the latter theorem into an actual principle.

In detail, by the thesis of Theorem 5.13, it is enough to observe that the first sequent of the
statement of Theorem 4.11 is equivalent to the sequent:

i : I | � � ∃u.∀x.ψD(i, u, x) → ∃v.∀y.φD(i, v, y)

by the elimination and introduction rules for the implication, and that the second one is equivalent
to the following:

i : I | � � ∃f0, f1.∀u, y.(ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y)).

For this second equivalence, one applies the implicational elimination and introduction to convert
the second sequent of 4.11 into:

i : I , u : U , y : Y | � � ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y),

which is actually equivalent to i : I | � � ∃f0, f1.∀u, y.(ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y)), by
Corollary 5.8 and being the formula:

i : I | ∀u, y.(ψD(i, u, f1(i, u, y)) → φD(i, f0(i, u), y))

existential-free.

Observe that Theorem 5.13 follows as a consequence of the fragment of first-order logic under
which the internal language of a Gödel hyperdoctrine is closed. So far we can reinforce what stated
in Remark 5.5 and say that this fragment contains at least the whole intuitionistic first-order logic
together with the Principle of Independence of Premise, the Generalized Markov Principle and the
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Principle of Skolemization. These principles, together with the rules of intuitionistic first-order
logic, are precisely what is needed to get the equivalence (ψ → φ)D ↔ (ψD → φD) in a Gödel
hyperdoctrine.

6 Conclusion

We have recast our previous fibrational based modelling of Gödel’s interpretation [31] in terms
of categorical (hyper)doctrines. We show that the notions we considered in our previous work
(existential-free and universal-free objects) really provide a categorical explanation of the traditional
syntactic notions as described in [6]. This means that we are able to mimic completely the purely
logical explanation of the interpretation, given by Spector and expounded on by Troelstra [6],
using categorical notions. We show how to interpret logical implications using the Dialectica
transformation. Through this process we explain how we go beyond intuitionistic principles,
adopting both the Independence of Premise (IP) principle and Markov Principle (MP) as well as
the axiom of choice in the logic.

Our main results show the perfect correspondence between the logical and the categorical tools,
in the cases of Markov principle (MP) and the independence of premise (IP) principle. Thus, we
improve our results discussed in [32] showing that, under certain hypotheses, they hold even in the
stronger form of principles.

This shows that the categorical modelling really captures all the essential features of the
interpretation. But it also opens new possibilities for modelling of constructive set theories (in the
style of Nemoto and Rathjen [21]) and of categorical modelling of intermediate logics (intuitionistic
propositional logic plus (IP) or (MK), see [1, 7]). This also leads into applications such as the
study of foundations of functional abstract machines [22], of dependent type theory [20], of reverse
mathematics [21], of concurrency theory [34] and of quantified modal logic [25], among others. In
future work, we want to investigate some of these applications as well as to pursue further abstract
characterizations of categorical logic.
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