Dialectica logical principles via free categorical constructions

Davide Trotta j.w.w. M. Spadetto and V. de Paiva

University of Pisa

Introduction: Dialectica interpretation

Gödel's Dialectica Interpretation: an interpretation of intuitionistic arithmetic HA in a quantifier-free theory of functionals of finite type, called system T.

Idea: translate every formula A of HA to $A^D = \exists x \forall y A_D$, where A_D is quantifier-free.

Application: if HA proves A, then system T proves $A_D(t, y)$, where y is a string of variables for functionals of finite type, and t a suitable sequence of terms (not containing y).

Goal: to be as constructive as possible, while being able to interpret all of classical arithmetic.

Gödel (1958), Über eine bisher noch nicht benützte erweiterung des finiten standpunktes, Dialectica, 12(3-4):280–287.

Introduction: Dialectica interpretation

The most complicated clause of the translation is the definition of the translation of the **implication connective** $(\psi \rightarrow \phi)^{D}$:

$$(\psi \rightarrow \phi)^D = \exists V, X. \forall u, y. (\psi_D(u, X(u, y)) \rightarrow \phi_D(V(u), y)).$$

This involves three logical principles: a form of the **Principle of Independence of Premise** (IP), a generalisation of **Markov's Principle** (MP), and the **axiom of choice** (AC).

Intuition: given a witness u for the hypothesis ψ_D , there exists a function V assigning a witness V(u) of ϕ_D to every witness u of ψ_D . Moreover, this assignment has to be such that from a counterexample y of the conclusion ϕ_D we should be able to find a counterexample X(u, y) to the hypothesis ψ_D .

Gödel, Feferman, et al (1986), Kurt Gödel: Collected Works: Volume II:, Oxford University Press.

Introduction: Dialectica interpretation in category theory

Dialectica category: given a category C with finite limits, one can build a new category $\mathfrak{Dial}(C)$, the objects of which have the form (U, X, α) where α is a subobject of $U \times X$ in C; such an object is thought of as the formula

 $\exists u \forall x \alpha(u, x).$

An arrow from $\exists u \forall x \alpha(u, x)$ to $\exists y \forall v \beta(y, v)$ can be thought of as a pair (f_0, f_1) of terms, subject to the condition

 $\alpha(u, f_1(u, v)) \vdash \beta(f_0(u), v).$

Generalization: the construction introduced by de Paiva has been generalized for arbitrary fibrations.

de Paiva (1991), The Dialectica categories, PhD Thesis.

Trotta, Spadetto and de Paiva (2021), *The Gödel fibration*, 46th International Symposium on Mathematical Foundations of Computer Science, 87:1-87:16

Hofstra (2011), The dialectica monad and its cousins, Models, logics, and higherdimensional categories: A tribute to the work of Mihály Makkai, 53:107-139

Dialectica logical principles categorically

- In what way does the construction of these Dialectica categories (or fibrations) capture the essential ingredients of Gödel's original translation, namely (IP), (MP) and (AC)?
- Can they be described in more conceptual terms, for example in terms of universal properties?

Doctrines

Definition

A **doctrine** is just a functor:

 $P\colon \mathcal{C}^{\mathsf{op}} \longrightarrow \mathbf{Pos}$

where the category ${\mathcal C}$ has finite products and Pos is the category of posets.

Definition

A doctrine $P: \mathcal{C}^{\text{op}} \longrightarrow \text{Pos}$ is **existential** (resp. **universal**) if, for every A_1 and A_2 in \mathcal{C} and every projection $A_1 \times A_2 \xrightarrow{\pi_i} A_i$, i = 1, 2, the functor:

$$PA_i \xrightarrow{P_{\pi_i}} P(A_1 \times A_2)$$

has a left adjoint \exists_{π_i} (resp. a right adjoint \forall_{π_i}), and these satisfy the **Beck-Chevalley condition**.

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \mathbf{Pos}$ be an existential doctrine and let A be an object of \mathcal{C} . A predicate α of the fibre P(A) is said to be an **existential splitting** if it satisfies the following universal property: for every projection $A \times B \xrightarrow{\pi_A} A$ of \mathcal{C} and every predicate $\beta \in P(A \times B)$ such that $\alpha \leq \exists_{\pi_A}(\beta)$, there exists an arrow $A \xrightarrow{g} B$ such that:

 $\alpha \leq P_{\langle \mathbf{1}_A,g \rangle}(\beta).$

Existential splittings stable under re-indexing are called *existential-free elements*. Thus we introduce the following definition:

Definition

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \mathbf{Pos}$ be an existential doctrine and let I be an object of \mathcal{C} . A predicate α of the fibre P(I) is said to be **existential-free** if $P_f(\alpha)$ is an existential splitting for every morphism $A \xrightarrow{f} I$.

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \mathbf{Pos}$ be a universal doctrine and let A be an object of \mathcal{C} . A predicate α of the fibre P(A) is said to be a **universal splitting** if it satisfies the following universal property: for every projection $A \times B \xrightarrow{\pi_A} A$ of \mathcal{C} and every predicate $\beta \in P(A \times B)$ such that $\forall_{\pi_A}(\beta) \leq \alpha$, there exists an arrow $A \xrightarrow{g} B$ such that:

 $P_{\langle 1_A,g\rangle}(\beta) \leq \alpha.$

Definition

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \mathbf{Pos}$ be a universal doctrine and let I be an object of \mathcal{C} . A predicate α of the fibre P(I) is said to be **universal-free** if $P_f(\alpha)$ is a universal splitting for every morphism $A \xrightarrow{f} I$.

Let $P: \mathcal{C}^{\text{op}} \longrightarrow \mathbf{Pos}$ be a doctrine. If P is existential, we say that P has **enough existential-free predicates** if, for every object I of \mathcal{C} and every predicate $\alpha \in PI$, there exist an object A and an existential-free object β in $P(I \times A)$ such that $\alpha = \exists_{\pi_I} \beta$. Analogously, if P is universal, we say that P has **enough universal-free predicates** if, for every object I of \mathcal{C} and every predicate $\alpha \in PI$, there exist an object A and a

universal-free object β in $P(I \times A)$ such that $\alpha = \forall_{\pi_l} \beta$.

A doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{Pos}$ is called a *Gödel doctrine* if:

- 1. the category \mathcal{C} is cartesian closed;
- 2. the doctrine *P* is existential and universal;
- 3. the doctrine P has enough existential-free predicates;
- 4. the existential-free objects of *P* are stable under universal quantification, i.e. if $\alpha \in P(A)$ is existential-free, then $\forall_{\pi}(\alpha)$ is existential-free for every projection π from *A*;
- 5. the sub-doctrine $P': C^{op} \longrightarrow Pos$ of the existential-free predicates of P has enough universal-free predicates.

An element α of a fibre P(A) of a Gödel doctrine P that is both an existential-free predicate and a universal-free predicate in the sub-doctrine P' of existential-free elements of P is called a **quantifier-free predicate** of P.

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{Pos}$ be a Gödel doctrine, and let α be an element of P(A). Then there exists a quantifier-free predicate α_D of $P(I \times U \times X)$ such that:

```
i: I \mid \alpha(i) \dashv \vdash \exists u: U. \forall x: X. \alpha_D(i, u, x).
```

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{Pos}$ be a Gödel doctrine. Then for every $\psi_D \in P(I \times U \times X)$ and $\phi_D \in P(I \times V \times Y)$ quantifier-free predicates of P we have that:

 $i: I \mid \exists u. \forall x. \psi_D(i, u, x) \vdash \exists v. \forall y. \phi_D(i, v, y)$

if and only if there exists $I \times U \xrightarrow{f_0} V$ and $I \times U \times Y \xrightarrow{f_1} X$ such that:

 $u:U,y:Y,i:I\mid \psi_D(i,u,f_1(i,u,y))\vdash \phi_D(i,f_0(i,u),y).$

Theorem

Every Gödel doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{Pos}$ validates the **Skolemisation principle**, that is:

 a_1 : $A_1 \mid \forall a_2$. $\exists b. \alpha(a_1, a_2, b) \dashv \exists f. \forall a_2. \alpha(a_1, a_2, fa_2)$

where $f : B^{A_2}$ and fa_2 denote the evaluation of f on a_2 , whenever $\alpha(a_1, a_2, b)$ is a predicate in the context $A_1 \times A_2 \times B$.

Theorem

Every Gödel doctrine P is equivalent to the Dialectica completion $\mathfrak{Dial}(P')$ of the full subdoctrine P' of P consisting of the quantifier-free predicates of P.

Gödel hyperdoctrine

A hyperdoctrine is a functor:

 $P: \mathcal{C}^{\mathsf{op}} \longrightarrow \mathbf{Hey}$

from a cartesian closed category C to the category of Heyting algebras **Hey** satisfying some further conditions: for every arrow $A \xrightarrow{f} B$ in C, the homomorphism $P_f : P(B) \longrightarrow P(A)$ of Heyting algebras, where P_f denotes the action of the functor P on the arrow f, has a left adjoint \exists_f and a right adjoint \forall_f satisfying the Beck-Chevalley conditions.

Definition

A hyperdoctrine $P: \mathcal{C}^{op} \longrightarrow Hey$ is said a *Gödel hyperdoctrine* when P is a Gödel doctrine.

Theorem

Every Gödel hyperdoctrine $P: \mathcal{C}^{op} \longrightarrow Hey$ satisfies the **Rule of Independence of Premise**, i.e. whenever $\beta \in P(A \times B)$ and $\alpha \in P(A)$ is a existential-free predicate, it is the case that:

 $a : A \mid \top \vdash \alpha(a) \rightarrow \exists b.\beta(a, b) \text{ implies that } a : A \mid \top \vdash \exists b.(\alpha(a) \rightarrow \beta(a, b)).$

Theorem

Every Gödel hyperdoctrine $P: C^{op} \longrightarrow$ Hey satisfies the following Modified Markov's Rule, i.e. whenever $\beta_D \in P(A)$ is a quantifier-free predicate and $\alpha \in P(A \times B)$ is an existential-free predicate, it is the case that:

 $a : A \mid \top \vdash (\forall b. \alpha(a, b)) \rightarrow \beta_D(a) \text{ implies that } a : A \mid \top \vdash \exists b. (\alpha(a, b) \rightarrow \beta_D(a)).$

Corollary

Every Gödel hyperdoctrine $P: \mathcal{C}^{op} \longrightarrow \text{Hey}$ such that \bot is a quantifier-free predicate satisfies **Markov's Rule**, i.e. for every quantifier-free element $\alpha_D \in P(A \times B)$ it is the case that:

 $b : B | \top \vdash \neg \forall a. \alpha_D(a, b)$ implies that $b : B | \top \vdash \exists a. \neg \alpha_D(a, b)$.

Corollary

Every Gödel hyperdoctrine $P: C^{op} \longrightarrow$ Hey such that T is existential-free satisfies the **Rule of Choice**, that is, whenever:

 $a : A \mid \top \vdash \exists b. \alpha(a, b)$

for some existential-free predicate $\alpha \in P(A \times B)$, then it is the case that:

 $a : A \mid \top \vdash \alpha(a, g(a))$