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The process of completing a category with quotients by producing an exact or regular category intro-
duced in [8, 9, 7] has been widely studied in the literature of category theory with applications both to
mathematics and to computer science, see [1, 2, 6].

In the works [10, 11, 12] the notions of exact completion of a weakly cartesian finite product category
and of a regular category turns out to be the base categories of two different instances of a completion with
exact quotients relative to a Lawvere elementary existential doctrine which is the fundamental structure
underlying the the tripos-to-topos construction in [3, 13].

Our first aim is to show that these various notions of quotient completions can be further extended
by freely adding exact, regular, elementary quotients to a primary doctrine P equipped with a class of
morphisms Λ in its base category where Λ is closed under composition, identities.

The key result which allows this characterization, is the introduction of notion of Λ-existential doctrine
and Λ-existential completion. In particular, the characterization of the free algebras

Theorem. Let P : C op // InfSL be a Λ-existential doctrine. Then P is an instance of Λ- existential
completion if and only if

1. P satisfies Λ-(RC);

2. P has enough-Λ-existential-free objects;

3. for every Λ-existential-free object α and β of P (A), then α ∧ β is Λ-existential-free object.

Then, we show how, using the notion of generalized existential completion, we can provide a charac-
terization of those elementary and existential doctrines P : C op // InfSL whose exact completion TP

is an instance of the (−)ex / lex completion.

Theorem. Let P : C op // InfSL be an elementary and existential doctrine. Then the regular com-
pletion Ef

Pcx
of the doctrine P is an instance of the (−)reg / lex completion if and only if Ef

Pcx
≡ Ef

P ′
cx

,
where P ′ is an instance of Ω-existential completion.

Theorem. Let P : C op // InfSL be an elementary and existential doctrine. Then the exact completion
TP of the doctrine P is an instance of the (−)ex / lex completion if and only if TP ≡ TP ′, where P ′ is an
instance of Ω-existential completion.
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